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Abstract
We provide a statistical characterization of the ionization yield of one-
dimensional, periodically driven Rydberg states of atomic hydrogen, in the spirit
of Anderson localization theory. We find excellent agreement with predictions
for the conductance across an Anderson localized, quasi-one-dimensional,
disordered wire, in the semiclassical limit of highly excited atomic initial
states. For the moderate atomic excitations typically encountered in state of
the art laboratory experiments, finite-size effects induce significant deviations
from the solid state picture. However, large-scale fluctuations of the atomic
conductance prevail and are robust when averaged over a finite interval of
driving field amplitudes, as inevitably done in the experiment.

PACS numbers: 72.15.Rn, 05.45.Mt, 32.80.Rm, 42.50.Hz

1. Introduction

Coherent quantum transport on a mesoscopic scale is the origin of many intriguing transport
phenomena in complex systems [1]. The somewhat vague attribute ‘complex’ summarizes a
multitude of more specific physical situations: complex dynamics can be generated by disorder,
by many-particle interactions, and by dynamical chaos, to name a few.

Arguably one of the most prominent and most fundamental coherence effects in complex
quantum transport is Anderson localization [2], the quantum suppression of conductance across
a disordered, quasi-one-dimensional solid state lattice. Viewed as a scattering problem, it
essentially manifests itself in exponentially small transmission probabilities from input to
output of the sample, as a consequence of multiple scattering events (with finite reflection and
transmission coefficients) at randomly placed scattering sites along the lattice. This naturally
generates a multitude of transmission amplitudes which have to be summed up coherently on
output. If their individual phases have been randomized by the disordered lattice potential, they
will tend to interfere destructively. In terms of electronic eigenfunctions, Anderson localization
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enforces their exponential localization on the lattice domain. The degree of localization is
characterized by the localization length ξ , which should be compared to the sample size L, in
order to allow predictions on the conductance across the sample [3]. Complexity is brought
about in this problem by two components: (a) the large number of interfering transmission
amplitudes, and (b) the disordered lattice potential which breaks the translational invariance
(which otherwise would reduce the complexity introduced by (a) through some kind of Bragg
condition).

As mentioned before, complexity can have different causes, and therefore a random
potential is not necessary to enforce vanishing total transition amplitudes or exponentially
localized eigenfunctions—any mechanism which equidistributes the phases of the individual
interfering amplitudes will do. In particular, dynamical chaos can substitute for disorder
in quantum systems with a well-defined classical counterpart, and, more generally, if such an
analogy is unavailable, deterministic quantum systems with largely broken symmetries or non-
perturbatively coupled degrees of freedom (displaying quantum chaos) can replace the simple
scenario of a disordered lattice (there is a caveat concerning the dimensionality of the dynamics,
but we shall restrict our attention here to effectively one-dimensional systems) [4–7]. The only
further ingredient required for such systems to mimic Anderson’s scenario is a sufficiently high
density of states, such that a sufficient number of transition amplitudes can interfere. At the
quantum–classical interface, this corresponds to sufficiently small values of the effective Planck
constant h̄eff , which is determined (via the uncertainty principle) by the comparison of h̄ to the
typical scales of the given problem, measured in canonical action-angle variables [7].

Besides simple billiard-shaped cavities, which are of some relevance in the context of
microdisc lasers [8], strongly perturbed atomic [7, 9] and molecular [10] systems are perfect
candidates to study signatures of Anderson localization in quantum systems without disorder.
The simplest (though realistic) representative of the latter is the hydrogen atom exposed to
electromagnetic fields [7], with the atom initially prepared in a Rydberg level of principal
quantum number n0 � 1, and a driving field frequency ω ∼ n−3

0 near resonant with the
atomic transition n0 → n0 + 1, i.e. within the microwave range. Such a choice of the relevant
parameters satisfies both general requirements stated above: on the one hand, the ionization
potential of a Rydberg state |n0〉 (we neglect the angular degree of freedom in our present
treatment) requires the (net) absorption of approximately N � 1/2n2

0ω ∼ n0 photons to
establish a transition to the atomic continuum. If, much as in the solid state problem, each
atomic bound state n > n0 (with energyE = −1/2n2) which is quasi-resonantly coupled to the
initial state (i.e. 1/2n2

0 −1/2n2 = mω+ δ,m integer, and δ 	 ω the detuning from resonance)
plays the role of a single scatterer of the lattice, then a large number of transition amplitudes
between |n0〉 and the continuum become available (notice that emission events will eventually
couple states with n < n0 as well). This number rapidly increases with N , which therefore
plays the role of the ‘atomic sample size’, in analogy to the lengthL of a solid state sample [11].
On the other hand, due to the nonlinearity of the Coulomb potential, the detuning δ, which
determines the coupling strength between quasi-resonantly coupled states, will be effectively
randomized (much like the simple generation of random numbers by a mod operation [12]), and
this accounts for randomizing the phases of the various transition amplitudes which mediate
the ionization process [13]. Consequently, the general scenery for Anderson localization to
occur—this time on the energy axis rather than along the lattice—is set. In addition, a perfect
classical analogue exists for the driven hydrogen atom: it is well-established that ionization
is brought about by classical chaos, in the specified parameter range, since the quasi-resonant
coupling of sequences of Rydberg states described above destroys the good quantum numbers
of the problem, which is synonymous to nonintegrability on the classical level [7, 9].

Indeed, the above analogy between charge transport through disordered solids and the
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ionization of Rydberg states by microwave fields was identified approximately 20 years
ago [4–7]. Baptized ‘dynamical localization’ (to stress its origin in dynamical chaos rather
than in disorder) it has been qualitatively demonstrated by several independent experimental
groups, on various atomic species [14–18]. A theoretical framework—known as ‘photonic
localization theory’ [7]—which relies on an ingenious mixture of crude approximations on the
atomic side and deep physical intuition on the statistical side, provides explicit expressions for
the mean of the localization length

〈ξ〉 = 3.33F 2
0ω

−10/3
0 n2

0 (1)

and for the sample size

N = n0

2ω0

(
1 − n

2
0

n2
c

)
(2)

where the factor in parentheses in (2) accounts for a shift of the ionization threshold to the finite
value nc <∞, induced by experimentally unavoidable stray electric fields [17]. ω0 = ωn3

0 and
F0 = Fn4

0 are, respectively, the frequency and amplitude scaled with respect to the classical
Kepler frequency, and to the Coulomb field amplitude along the unperturbed classical Rydberg
orbit [7].

According to the scaling theory of localization [19], ξ fluctuates around 〈ξ〉 for different
realizations of the sample, at finite N , and tends to the non-fluctuating, sample-independent
value 〈ξ〉 only for N → ∞, with the statistical distribution of ξ completely determined by the
localization parameter

� ≡ 〈ξ〉
N

� 6.66F 2
0 n0

ω
7/3
0

(
1 − n

2
0

n2
c

)−1

. (3)

By virtue of this last expression, different realizations of the same value of � can be realized, at
fixed n0, by simultaneously tuning F0 and ω0 over a finite interval. Since, for an exponentially
localized wave function on the energy axis, the population close to threshold is ∼ exp(−2N/ξ),
the ‘atomic conductance’ g (and this is nothing but the total transition probability to the atomic
continuum) should then reflect the fluctuations of ξ−1 in exponentially enhanced fluctuations
via

g ∼ exp(−2N/ξ). (4)

Consequently, Anderson localization of the electronic bound-space population of a periodically
driven Rydberg state implies large-scale fluctuations of g and also of the total ionization yield,
under changes of ω0, at fixed values of � and n0.

This latter prediction has been verified in a recent publication [11] on the conductance of
periodically driven one-dimensional Rydberg states of atomic hydrogen. More precisely, [11]
demonstrated the lognormal distribution of g (which follows from a normal distribution of ξ−1,
via (4)), and the approximately linear dependence of Var(ln g) on 〈ln g〉 [20], for the single
value n0 = 70 of the principal quantum number. However, the following highly relevant
questions remained unaddressed:

• Sample size N and localization parameter � explicitly depend on n0, and therefore on
h̄eff ∼ n−1

0 (the latter relation is a direct consequence of the scale invariance of the
classical equations of motion of the driven Rydberg electron [7]). In the light of our
qualitative discussion above, N , and therefore n0, must not be too small for the Anderson
picture to prevail in the atomic ionization process, since otherwise not enough transition
amplitudes with quasi-random phases will contribute to the total ionization yield. Hence,
are we able to detect significant deviations from the predictions of Anderson’s model in
the atomic problem, for smaller values of n0?
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• Which are the smallest values of n0 for which the dominant signatures of Anderson
localization remain detectable in the ionization process?

• Can we confirm the linear dependence of Var(ln g) on 〈ln g〉 for variable values of n0?
• Under which conditions are the predicted fluctuations of the atomic conductance

experimentally observable?

The present contribution attempts to answer these questions.
The paper is organized as follows. Section 2 summarizes our theoretical/numerical

approach to the atomic problem at hand, and introduces our definition of the atomic
conductance. In section 3 we investigate the statistical properties of the atomic conductance,
and particularly their dependence on the principal quantum number n0, which explicitly enters
equations (1)–(3). Section 4 concludes the paper, with a discussion of the experimental
implications of our results.

2. Theoretical background

The Hamiltonian of a hydrogen atom exposed to an electromagnetic field polarized along the
z-axis reads, in atomic units,

H = 1

2
�p 2 − 1

r
− Fpz
ω

sin(ωt). (5)

Here, the dipole approximation in the velocity gauge was used, we dropped the ponderomotive
energy shift, assumed an infinite mass of the nucleus, and neglected relativistic effects [21]. In
the following, we shall furthermore restrict configuration space to the single dimension defined
by the field polarization axis, which results in the Hamiltonian

H = 1

2
pz

2 + V (z)− Fpz
ω

sin(ωt) with V (z) =
{ − 1

z
z > 0

∞ z � 0.
(6)

This approximation was chosen to keep the numerical effort necessary for sampling sufficient
statistical data within reasonable bounds, and is also justified for atoms initially prepared
in extremal parabolic states which are quasi-one-dimensional eigenstates of the unperturbed
hydrogen atom [22, 23]. Even for real three-dimensional atomic initial states with low
angular momentum quantum numbers, this one-dimensional model has been shown to yield
quantitatively satisfactory results, within a certain parameter regime [21,23]. Notwithstanding,
an extension of our present work to the real three-dimensional world remains clearly desirable
and will bear further surprises, but is at present an extremely expensive enterprise which
saturates the largest computer facilities currently available. For the time being, despite their
restricted range of predictive power, our subsequent results exhibit enough novel phenomena
which shed new light on the atomic ionization process, and indicate the road to follow in future
3D calculations.

In order to extract ionization yields from the time-periodic Hamiltonian (6), we exploit the
Floquet theorem and diagonalize the Floquet Hamiltonian H = H − i∂t in a Sturmian basis,
after complex dilation [21]. This provides direct access to the poles of the resolvent of H,
and hence an exact representation of the Green’s function and of the associated time evolution
operator of our problem. The latter finally leads (after an average over the initial phase of the
driving field) to the following expression for the atomic ionization yield Pion(t) as a function
of the interaction time t [21]:

Pion(t) = 1 −
∑
ε

wε exp(−�εt) t > 0. (7)
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The sum runs over a single Floquet zone of length ω on the energy axis [21], the �ε represent
the ionization rates of individual Floquet eigenstates |ε〉 of the atom in the field, and thewε are
their weights in the decomposition of the atomic initial state |n0〉 over the Floquet basis. Note
that for n0 � 40–100, approximately 50–120 Floquet states contribute with non-vanishing
wε to the sum in (7). Therefore, we are in a situation which is profoundly different from the
single-state approximation familiar from the ionization of atoms (initially prepared in their
ground state) by intense optical fields [24].

From (7), we can now derive a definition of the atomic conductance g, in terms of the
spectral information obtained from the diagonalization of H, as the average ionization rate at
t � 0 [11]:

g ≡ 1

�

d

dt
Pion(t)

∣∣∣∣
t�0

= 1

�

∑
ε

�εwε. (8)

In order to render g dimensionless, we divided by the average level spacing � of the Floquet
eigenvalues. Furthermore, since in the atomic problem there is no incoming particle flux as
in the solid state transmission problem, it is reasonable to take the derivative at t � 0, in the
above expression. Note that the right-hand side of (8) is strongly reminiscent of Landauer’s
formula for the conductance across a disordered sample [25], if we identify the Floquet rates
�ε with matrix elements of the transition matrix in the solid state problem. Indeed, such an
identification can be justified more formally, as we shall show elsewhere [26].

3. Numerical results

We have now set the scene for our statistical analysis of the atomic conductance. To gain
a qualitative impression of the phenomenon we are dealing with, let us first focus on the
parameter dependence of the ionization yield, equation (7), of the initial state n0 = 100,
for two different values � = 0.2 and 1, and an interaction time t = 300 × 2π/ω [22].
Figure 1 shows our numerical result, within the interval ω0 ∈ [2.0; 2.5] (500 equidistant
values of ω0 were found sufficient to resolve all structures of the signal). For � = 0.2, the
ionization yield is typically very small, close to zero, but is locally strongly enhanced (by

2 2.1 2.2 2.3 2.4 2.5
ω0

0

0.1

0.2

P io
n(

ω
0)

2 2.1 2.2 2.3 2.4 2.5
ω0

0.2

0.3

0.4

0.5

0.6

0.7

Figure 1. Ionization yield Pion(t) versus the scaled frequency ω0, for an initial principal quantum
number n0 = 100, and fixed interaction time t = 300 × 2π/ω. In the localized regime (� = 0.2,
left), the ionization yield is close to zero, amended by erratic fluctuations. In the delocalized
regime (� = 1, right), the average yield is clearly finite, with erratic fluctuations of the same order
of magnitude.
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2 2.1 2.2 2.3 2.4 2.5
ω0
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1e−07

2e−07

3e−07

2e−06

4e−06

6e−06

8e−06

1e−05

1.2e−05

∆

Figure 2. Comparison of the two estimates of the average level spacing � (equation (9)), as a
function of the scaled frequency ω0, for constant localization parameter � = 0.2. The full curves
show the spacings deduced from the Shannon entropy WShannon, which in the localized regime
(〈ξ〉 < N ) are typically larger than those given by the simple estimate ω/N (dashed-dotted lines).
As the quantum number n0 of the initial Rydberg state increases from 40 (top) to 100 (bottom), the
absolute values of the spacings decrease. The statistical properties of the atomic conductance (8)
discussed hereafter turn out to be independent of the definition of�, except for an irrelevant offset
in the statistical distributions.

orders of magnitude), at apparently random values of ω0. For � = 1, however, the yield
exhibits large fluctuations around a clearly finite average value larger than zero, and of the
same order of magnitude as the average ionization probability. Both cases are reminiscent of
conductance fluctuations through disordered solid state samples, in the localized (� = 0.2) and
in the diffusive (or delocalized, � = 1) regime, respectively [27, 28]. Note that the observed
fluctuations occur on a scale δω0/ω0 � 10−2, i.e. Pion is a smooth function of ω0 on scales
δω0/ω0 � 10−3 or smaller [29]. For n0 � 60–100, this corresponds to a typical frequency
window of approximately δω/2π � 700–150 MHz, on which the fluctuations should be
detectable, rather than on scales smaller by one order of magnitude, as considered in [30].

To deduce the ω0-dependence of the atomic conductance from the yield displayed in
figure 1, we still need to extract the average level spacing� from the raw numerical data. Since
not all eigenstates |ε〉 of H actually contribute to the ionization of |n0〉, we have to account for
the relative weightwε of the individual Floquet eigenstates in our definition of�. One way of
doing so is to estimate the number of effectively contributing Floquet states as exp (WShannon),
via the Shannon entropy WShannon = − ∑

ε wε lnwε [31]. Another way [11] is to assume
that as many Floquet states contribute to the ionization dynamics as there are quasi-resonantly
coupled unperturbed states between the atomic initial state and the continuum threshold, i.e.
N (see equation (2) above). Both estimates consistently provide similar results, i.e.

� � ω

N
� ω

exp(WShannon)
(9)

as illustrated in figure 2, in the localized as well as in the delocalized regime (note that,
more precisely, N > exp(WShannon) in the localized regime, and N < exp(WShannon) in the
delocalized regime, which is consistent with the interpretation ofN as the atomic sample size).
We checked that this remains true for all values ofn0 considered hereafter, and that the statistical
properties of g are insensitive to the definition of� we choose, except for an irrelevant offset.
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Figure 3. Atomic conductance versus scaled frequency ω0, for localization parameters � = 0.2
(left) and � = 1 (right), and for initial atomic Rydberg states n0 = 40 (top), n0 = 100 (bottom),
respectively. The semi-logarithmic plots for the localized case � = 0.2 (left column) clearly exhibit
huge fluctuations over several orders of magnitude, a characteristic feature of quantum transport in
the presence of Anderson localization (see text). In the delocalized regime (� = 1, right column)
the amplitude of the fluctuations is strongly reduced (note the linear scale) and comparable to the
average conductance.

Therefore, all subsequent results are presented with the convention � ≡ ω/N .
With this definition, we show the ω0-dependence of the atomic conductance in figure 3,

for two values of n0 = 40 and 100, as well as for the two values of the localization parameter
already employed in figure 1. Clearly, the erratic fluctuations of Pion carry over to the atomic
conductance. Note that in the localized regime (� = 0.2) the fluctuations manifest on a
logarithmic scale (ln g is plotted versus ω0 in the left column of figure 3), whereas in the
delocalized regime (� = 1) the fluctuations of g are of the same order of magnitude as
its average value (g is plotted versus ω0 in right column of figure 3) . Furthermore, the
scale δω0/ω0 of the fluctuations clearly becomes finer as the principal quantum number n0 is
increased from n0 = 40 to n0 = 100, an observation which is consistent with the increased
density of states as one approaches the ionization threshold.

It should be stressed here that such large fluctuations, especially those in the localized
regime, are truely remarkable, since they manifest in a quantity which represents a weighted
average over the entire Floquet spectrum, according to equation (8). In an experiment with,
say, n0 = 80, and a carrier frequency of approximately ω/2π � 30 GHz, a detuning of
approximately 100 MHz can enhance the ionization yield from virtually zero to more than
10%! It has been shown earlier [29, 32] that specific, individual Floquet eigenstates of the
atom in the field may exhibit large-scale, erratic fluctuations of their ionization rates under
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Figure 4. Average value of ln g versus the inverse localization parameter �−1, for principal quantum
numbers n0 = 40 (�), 60 (!), 70 (�), 90 (♦), 100 (◦) of the atomic initial state, and � = 0.1–2.
〈ln g〉 was obtained from sampling g for 500 equidistant values of ω0 ∈ [2.0; 2.5], at fixed � (see
equation (3)). For n0 = 100 we observe an almost perfectly linear dependence, in agreement with
(4) and, hence, with the Anderson picture. As n0 decreases, 〈ξ〉 and N decrease at fixed �, and
a clear deviation from an exponential decrease of 〈ln g〉 with �−1 is systematically observed for
〈ξ〉 < 3.

changes of some control parameter, for instance of ω0. Here, it is the conspiracy of the
distribution of the weights wε and rates �ε over the entire spectrum which produces a similar
effect!

Let us now proceed to a first quantitative test of photonic localization theory. If the
atomic localization parameter � defined in (3) indeed plays the same crucial role as in the solid
state problem, then 〈ln g〉 should decrease linearly with increasing �−1, by virtue of (3) and
(4). Figure 4 shows our numerical result, for different values of n0. Apparently, the solid
state prediction is almost perfectly followed for the largest principal quantum number (i.e. the
largest individual values of 〈ξ〉 and N in (1) and (2)). On the other hand, the smaller n0, and,
hence, the smaller 〈ξ〉 and N , the larger are the deviations from the linear dependence. This,
however, can be readily understood since the deviations occur systematically (for all values of
n0) for localization parameters (small �, large �−1) which correspond to average localization
lengths 〈ξ〉 < 3 (down to 〈ξ〉 � 0.6–0.75, for � = 0.1 and n0 = 40). Then, according to the
simple picture developed in the introduction, no more than two bound states of the atom are
efficiently coupled by the driving field, and it does not make any sense to speak of an electronic
wave function which is exponentially localized over quasi-resonantly coupled bound states on
the energy axis. As a matter of fact, it is rather surprising that the linear behaviour is observed
in figure 4 for values of 〈ξ〉 as small as 3 or 4, since the assumptions [7] for the derivation of
(1) imply 〈ξ〉 � 1.

A further quantitative test of the analogy between atomic and solid state transport problem
is the statistical distribution of the atomic conductance sampled over different values of ω0, for
fixed �. Figures 5 and 6 show histograms of ln g, for n0 = 40 and n0 = 100, respectively, and
� = 0.1–0.5 (for each histogram, approximately 10 000—60 000 resonances with nonvanishing
weightswε contribute to 500 values of g). Systematically, the lognormal fits of the histograms
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Figure 5. Distributions of the logarithm of the atomic conductance ln g sampled over 500
equidistant values ofω0 ∈ [2.0; 2.5], for each value of the localization parameter � = 0.1, 0.2, 0.25,
0.5, (top left to bottom right), and n0 = 40. The thick lines show the best fit to a normal distribution
which is expected on the grounds of Anderson localization theory. The histograms shift to higher
values of ln g, with decreasing widths as � grows. Clearly, for this smallest n0-value employed in
our calculations, there are considerable deviations from the expected lognormal behaviour.

obtained from our data improve as n0 is increased, in particular in the wings of the distributions.
For small �, low values of n0 tend to induce a sharp cut-off at small conductances, which we
attribute once more to the increasing ‘granularity’ of the ionization process as n0 decreases.
For principal quantum numbers n0 � 70, however, the distributions of the atomic conductance
are well fitted [33] by the lognormal prediction derived from the Anderson model.

For given n0 and increasing �, the distribution of ln g shifts to larger values, as visible, for
example, in figures 6 and 7, for n0 = 100, and also in figure 4. Furthermore, as might already
be expected from the comparison of the ω0-dependence of the atomic conductance for � = 0.2
and � = 1 (figure 3), the lognormal fit ceases to be a good approximation of the histograms
for too large values of �. As evident from figure 7, the distribution starts to get asymmetric at
� = 1, and is clearly not lognormal any more for � = 2. This transition from the localized to
the delocalized (or diffusive [3,7]) regime is even more pronounced in figure 8, where we plot
the histogram of g rather than of ln g: with � increasing from 0.75 to 2, the distribution shifts
to larger values, broadens, and develops a large gap at g = 0. Still, a Gaussian distribution
of g as observed for diffusive transport in the solid state transmission problem [20] cannot be
established here.

Finally, we examined the variances of ln g as obtained from our numerical data, for
different values of n0. The result is shown in figure 9. Whereas localization theory suggests a
linear dependence Var(ln g) ∼ −〈ln g〉 [20], our data appear to support this expectation only
within a finite interval of 〈ln g〉, which furthermore depends on n0, and can be roughly confined
by the limits −12 � 〈ln g〉 � −7. For small values of 〈ln g〉, the variance systematically drops
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Figure 6. Histograms of ln g fitted by a normal distribution (thick line), for n0 = 100 and the same
localization parameters and sampling interval as in figure 5. The agreement with the lognormal
prediction implied by Anderson localization theory is essentially perfect now, at sample sizes and
average localization lengths N � 15–19 and 〈ξ〉 � 2–9, respectively, for � = 0.1–0.5.

faster than linearly, and it turns out that its overall dependence on the average conductance
is best fitted by a quadratic law, for all n0. Once again, we attribute this deviation from the
solid state picture to the finite-size effect which already manifested itself in the dependence of
〈ln g〉 on �−1, and in the distribution of ln g, for small values of �. For too-small localization
lengths, the distribution of ln g is not lognormal any more. Deviations notably occur in the
wings, and we cannot expect a linear variation of Var(ln g) in this parameter regime. At the
other extreme, at large localization parameters, the variance saturates, in accordance with our
observations in figures 3, 4 and 8, as well as with general expectations for diffusive transport
in disordered solids [3].

4. Conclusions

To summarize, we can now respond to the questions we formulated at the beginning of
this paper. Our above results demonstrate that the essential statistical features of the
conductance across an Anderson-localized solid state sample do indeed carry over to the
fully deterministic ionization process of quasi-one-dimensional hydrogen Rydberg states
under microwave driving, where dynamical chaos substitutes disorder. In response to our
first introductory question, we do observe important amendments to the solid state picture
(which implicitly always assumes a localization length much larger than the typical distance
between neighbouring lattice sites) imported to the atomic realm by photonic localization
theory. These amendments directly originate—via the atomic sample sizeN , equation (2)—in
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Figure 7. Distributions of the logarithm of the atomic conductance for n0 = 100 and localization
parameters � = 0.5, 0.75, 1, 2 (top left to bottom right). The distributions shift to larger values
of ln g and get narrower as � is increased. At � = 2, a clear deviation from the lognormal fit is
observed, which reveals the transition to the delocalized regime. Similar results are obtained over
the entire range n0 = 40–100.
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Figure 8. Distributions of the atomic conductance of n0 = 100, for large localization parameters
� = 0.75 (left), 1 (middle), and 2 (right), as in figure 7, but on a linear scale. The broadening of
the distribution with increasing �, together with the widening gap at g = 0, indicates the transition
to the delocalized (diffusive) regime.

the finite size of h̄eff ∼ n−1
0 . However, they neither affect the monotonous decrease of the

mean atomic conductance with the inverse of the localization parameter (figure 4), nor the
large-scale fluctuations of g, for different realizations of �.

A rough estimate offers an answer to our second question: figures 7–9 suggest that the
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Figure 9. Variances of the atomic conductance ln g versus its average 〈ln g〉, for n0 = 40 (�),
60 (!), 70 (�), 80 (�), and 100 (◦), respectively. The localization parameter � increases from
left to right (� = 0.1–2.). Each data point was obtained by sampling g over 500 equidistant values
of ω0 ∈ [2.0; 2.5], for given �.

transition from localized to diffusive transport sets in at � � 0.5. Furthermore, we have
seen that deviations from the exponential dependence of 〈ln g〉 on �−1 become manifest for
〈ξ〉 < 3. Considering the monotonous decrease of 〈ln g〉 with decreasing � (figure 4) as
the most robust signature of localization, we therefore require that the minimum value of n0

permits localization lengths 〈ξ〉 > 2 at � = 0.5. By virtue of equations (1)–(3), this implies
n0 � 4ω0〈ξ〉 > 8ω0 � 16–20 (with ω0 = 2.0–2.5), and is consistent with earlier numerical
results [21] for smaller values of n0 � 23. On the other hand, however, the exponentially
enhanced fluctuations of the atomic conductance, as the actual, quantitative fingerprint of
Anderson localization in our driven atomic system, fully prevail only for n0 > 70 (figures 5–7,
see also [33]).

The reply to our third question directly follows from our discussion of figure 9 above,
which suggests a smooth transition from lognormally distributed atomic conductances for
sufficiently large localization lengths and principal quantum numbers, to more coarse-grained
distributions with larger variances. Taking into account the perturbative coupling limit defined
by small values of 〈ξ〉 � 2, it should be possible to derive an approximate analytical expression
for the general behaviour of Var(ln g) with 〈ln g〉.

Finally, we verified that the fluctuations displayed in figure 3 remain essentially unaffected
if we average over a finite window of F0 (and, hence, of �), at any given value of ω0. We
assumed a relative error of δF0/F0 � 5% in the experimental calibration of the field amplitude
experienced by the atoms, which is state of the art in laboratory experiments [17,18]. Therefore,
exponentially large fluctuations of the atomic conductance in the localized regime should be
observable via measurements of the ionization yield at sufficiently short interaction times
(see figures 1 and 3). Importantly, such experiments must be performed below the ionization
(i.e. delocalization) threshold, as is immediately apparent from figure 1. Since, so far, most
experimental evidence in support of dynamical localization in periodically driven atoms is
based on measurements of the ionization threshold [14,15,17,18], which proves no more than
a monotonous decrease of the average conductance with decreasing �, the crucial experimental
test of Anderson localization in driven atomic systems is yet to be performed.
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